计算机仿真实验:万有引力常数的测定

这是很牛B的教育文件

实验简介

测量万有引力常数G的物理意义是极大的。然而在自然界中万有引力非常微小,对于G的测量需要非常精确的方法。1798年卡文迪许(S. H. Cavendish)用扭秤法测量了两个已知质量球体之间的引力,成为精确测量万有引力常数第一人。19世纪,坡印亭(Poynting)和坡依斯(Boys)又对卡文迪许的实验做了重大改进。随着科学技术的发展,现在公认的万有引力常数G的值为 。

测量引力常数G的意义是极大的。例如,根据牛顿运动定律和万有引力定律可以推算出太阳系中天体的运动情况(与天文观测结果几乎完全一致);可以根据万有引力定律和卡文迪许实验所算出的G值来确定地球的质量,算出地球的质量和体积,就可以推断出地球内部的物质密度,获得地核性质方面的知识等。

因为G的数值非常微小,所以在地球表面上物体之间的引力很微小,以至于通常可以忽略。因此卡文迪许扭秤法测量万有引力常数G的实验是一个非常精致的实验。时至今日,这个实验的思构思、思想、实验方法仍具有现世的指导意义,并被广泛使用。本实验要求学生: 1. 掌握在扭秤摆动中求平衡位置的方法。

2. 掌握如何通过卡文迪许扭秤法测量万有引力常数。

 

 

 

 

实验原理

根据牛顿万有引力定律,间距为r, 质量为 m1 和m2 的两球之间的万有引力F方向沿着两球中心连线,大小为

(1)

其中G为万有引力常数。

计算机仿真实验:万有引力常数的测定

你可能喜欢

  • 卡文迪许扭秤实验
  • 大学物理实验答案
  • MATLAB编程
  • 示波器使用实验报告
  • 太阳电池
  • 高中物理万有引力
  • 万有引力定律
  • 万有引力与航天

计算机仿真实验:万有引力常数的测定相关文档

最新文档

返回顶部